Use the laws of logarithms and the values given below to evaluate the logarithmic expression (picture provided)

Answer: option b.
Step-by-step explanation:
To solve the given exercise, you must keep on mind the following law of logaritms:
[tex]m*log(a)=log(a)^m[/tex]
Descompose 8 into its prime factors:
[tex]8=2*2*2=2^3[/tex]
Therefore, you can rewrite the expression given, as following:
[tex]log8=log2^3=3log2[/tex]
You know that [tex]log2=0.3010[/tex]
Then, when you substitute, you obtain:
[tex]3*0.3010[/tex]≈0.9030
Factor out 8 using 2.
log(8) = log(2^3)
Use the product rule [ log(xy) = log(x) + log(y) ] to simplify.
log(2^3) = 3 log(2)
Simplify using the given value for 2.
3(0.3010)
0.9030
Therefore, log(8) ≈ 0.9030 (Option B)
Best of Luck!