In ΔABC (m∠C = 90°), the points D and E are the points where the angle bisectors of ∠A and ∠B intersect respectively sides BC and AC . Point G ∈ AB so that DG ⊥ AB and H ∈ AB so that EH ⊥ AB .Prove m∠HCG = 45° (with statement reason preferably).
This equation represents the sum of angles at point C: ∠DCG + ∠HCG + ∠ECH = 90°, ∴ ∠HCG = 45° . . . . subtraction property of equality, transitive property of equality. (Subtract ∠DCG+∠ECH from both equations (14 and 15).)